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This paper studies the heat transfer process in a two-dimensional steady hydromagnetic natural
convective flow of a micropolar fluid over an inclined permeable plate subjected to a constant heat flux
condition. The analysis accounts for both temperature dependent viscosity and temperature dependent
thermal conductivity. The local similarity equations are derived and solved numerically using the
NachtsheimeSwigert iteration procedure. Results for the dimensionless velocity and temperature
profiles and the local rate of heat transfer are displayed graphically delineating the effect of various
parameters characterizing the flow. The results show that in modeling the thermal boundary layer flow
when both the viscosity and thermal conductivity are temperature dependent, the Prandtl number must
be treated as a variable to obtain realistic results. As the thermal conductivity parameter increases, it
promotes higher velocities and higher temperatures in the respective boundary layers. The wall shear
stress increases with the increase of thermal conductivity parameter. This is true of electrically con-
ducting as well as electrically non-conducting fluids. The presence of heat generation invigorates the
flow and produces larger values of the local Nusselt number compared with the case of zero heat
generation.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

The micropolar fluids are those which contain micro-constitu-
ents and can undergo rotation. These kind of fluids are utilized in
analyzing exotic lubricants, the flow of colloidal suspensions,
paints, liquid crystals, animal blood, fluid flowing in brain, turbu-
lent shear flows, and body fluids both mathematically and indus-
trially. Since the early studies of Eringen [1,2], many researchers
have reported results on micropolar fluids (see [3e16] and the
references therein).

The study of variable viscosity thermal boundary layer flow over
an isothermal surface is important in processes such as hot rolling,
wire drawing, glass fiber production, paper production, gluing of
labels on hot bodies, drawing of plastic films, etc. In the classical
treatment of thermal boundary layers, the kinematic viscosity is
assumed to be constant. However, experimental studies indicate
that this assumption is valid only if the temperature variation
during the flow is not large. Because many applications involve
large temperature variations, numerous researchers have studied
flows with temperature dependent viscosity and reported results
man).

son SAS. All rights reserved.
for both Newtonian and non-Newtonian fluids flowing in different
geometries and under various flow conditions (see for example
[17e26]).

It is well known that thermo-physical properties of the ambient
fluid, especially the thermal conductivity may change with
temperature (see [27e31]). Recently, Prasad and Vajravelu [32]
have studied the effect of variable thermal conductivity in a non-
isothermal sheet stretching through power law fluids. Similar
studies for the viscoelastic fluids have been reported by Prasad et al.
[33]. Both studies revealed that the effect of variable thermal
conductivity is to increase the shear stress.

The thickness of the thermal boundary layer relative to the
velocity boundary layer depends on the Prandtl number which by
its definition varies directly with the fluid viscosity and inversely
with the thermal conductivity of the fluid. As the viscosity and the
thermal conductivity vary with temperature so does the Prandtl
number. Despite this fact, all of the afore-mentioned studies treated
the Prandtl number as a constant. The use of a constant Prandtl
number within the boundary layer when the fluid properties are
temperature dependent, introduces errors in the computed results.
Recently, Rahman and Salahuddin [34] studied hydromagnetic flow
of a Newtonian fluid over an inclined plate with variable viscosity
whereas Rahman et al. [35] studied the flow of a micropolar fluid
with variable viscosity over a permeable stretching sheet. Both
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Nomenclature

Roman
B0 magnetic induction, [Wb m�2]
Cf local skin-friction coefficient
cp specific heat at constant pressure, [kJ kg�1 K�1]
f dimensionless stream function
fw dimensionless suction/injection velocity
g0 acceleration due to gravity, [m s�2]
g dimensionless microrotation
j micro-inertia per unit mass, [m2]
M local magnetic field parameter
N microrotation component normal to xy-plane, [s�1]
Nux local Nusselt number
n microrotation parameter
Pr variable Prandtl number
PrN ambient Prandtl number
Q temperature dependent heat source (or sink)

parameter
Q* surface dependent heat source (or sink) parameter
qw surface heat flux, [W m�2]
q

000
volumetric heat source (or sink), [W m�3]

Rex local Reynolds number
S coefficient of vortex viscosity, [Pa s]
Tw temperature at the surface of the plate, [K]
T temperature of the fluid within the boundary layer, [K]
TN temperature of the ambient fluid, [K]
UN free stream velocity, [m s�1]
U0 characteristic velocity, [m s�1]

vs suction/injection velocity, [m s�1]
u; v the x -and y -component of the velocity field, [m s�1]
x; y distance along and normal to the plate, [m]

Greek
a angle of inclination of plate [rad]
b volumetric coefficient of thermal expansion, [K�1]
l local buoyancy parameter
r fluid density, [kg m�3]
3 thermal conductivity parameter
m dynamic viscosity, [Pa s]
mN dynamic viscosity at ambient temperature, [Pa s]
y kinematic viscosity, [m2 s�1]
yN kinematic viscosity at ambient temperature, [m2 s�1]
s00 electrical conductivity of the fluid [S m�1]
s0 magnetic permeability [N A�2]
j stream function, [m2 s�1]
h similarity variable
q dimensionless temperature
qr variable viscosity parameter
k thermal conductivity, [Wm�1 K�1]
kN thermal conductivity at ambient temperature,

[Wm�1 K�1]
D vortex viscosity parameter

Subscripts
w surface
N conditions far away from the surface
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studies confirmed that for the accurate prediction of the thermal
characteristics of variable viscosity fluid flows, the Prandtl number
must be treated as a variable rather than a constant. These studies,
however, assumed the thermal conductivity to be a constant. In
another study, Rahman et al. [36] investigated the effects of variable
electric conductivity and non-uniform heat source (or sink) on
convective micropolar fluid flow along an inclined flat plate with
a constant surface temperature. They found that the skin-friction
coefficient and Nusselt number are higher for the case of constant
fluid electric conductivity than for the case of variable fluid electric
conductivity. In their model, they treated fluid viscosity and
thermal conductivity to be constants.

The objective of the present study is to extend the work of
Rahman et al. [36] to a permeable inclined plate and to take into
account variable fluid viscosity as well as variable thermal
conductivity. Instead of a constant temperature at the plate as in
[36], the present paper imposes a constant heat flux condition at
the plate. Thus the main focus of the analysis is to investigate how
the Prandtl number varies within the boundary layer when both
the thermal conductivity and viscosity are temperature dependent
and, in addition, there is mass transfer (suction or injection) at the
plate. The local similarity equations are derived and solved
numerically using the NachtsheimeSwigert iteration procedure.
Graphs and tables are presented to illustrate and discuss important
hydrodynamic and thermal features of the flow.

2. Formulation of the problem

2.1. Flow analysis

Consider a steady two-dimensional hydromagnetic laminar
convective flow of a viscous, incompressible, micropolar fluid along
a semi-infinite inclined impermeable flat plate with an acute angle
a to the vertical. The applied magnetic field is assumed to be in the
y-direction and varies in strength as a function of x and is defined
as:

B
! ¼ ð0;BðxÞÞ: (1)

The external electricfield is assumed to be zero and themagnetic
Reynolds number is assumed to be small. Hence, the induced
magnetic field is small compared with the externally applied
magnetic field. The fluid of density ðrÞ is quiescent ðUN ¼ 0Þ and
the convective motion is induced by the buoyancy forces. The
viscosity ðmÞ and thermal conductivity of thefluid ðkÞ are assumed to
be functions of temperature. The pressure gradient, body forces,
viscous dissipation and Joule heating effects are neglected
compared with the effect of internal heat source (or sink).

Within the framework of the above-noted assumptions, the
convective flow of a steady incompressible micropolar fluid subject
to the Boussinesq approximation can be described by the following
conservation equations (see Rahman et al. [36]):

vu
vx

þ vv

vy
¼ 0; (2)
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�
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000
; (5)

where u,v are the velocity components along x,y coordinates,
respectively, r is the density of the fluid, m is the dynamic viscosity,
S is the microrotation coupling coefficient (also known as the
coefficient of gyro-viscosity or the vortex viscosity), N is the
microrotation component normal to the xy-plane, j is the micro-
inertia per unit mass, T is the temperature of the fluid in the
boundary layer, cp is the specific heat of the fluid at constant
pressure, g0 is the acceleration due to gravity, b is the volumetric
coefficient of thermal expansion.

The non-uniform heat source (or sink) q
000
(see [37]) is modeled

as

q
000 ¼ kNU0

2yNx

h
QðT � TNÞ þ Q*ðTw � TNÞe�h

i
; (6)

where yN is the kinematic viscosity at ambient temperature, kN is
the thermal conductivity at ambient temperature, Q and Q* are the
coefficients of space and temperature dependent heat source (or
sink) terms, respectively, TN is the ambient temperature, and h is
the similarity variable defined later by equation (11). The case of
Q > 0, Q* > 0 corresponds to heat generation and that of Q < 0,
Q* < 0 corresponds to heat absorption.

For the flow under investigation, the strength of the applied
magnetic field BðxÞ is assumed to be variable and of the form (see
Helmy [38]):

BðxÞ ¼ B0ffiffiffi
x

p ; where B0 is a constant: (7)

The electrical conductivity s00 is assumed to be dependent on the
velocity of the fluid and has the following form (see Helmy [38],
Aissa and Mohammadein [39], Rahman and Salahuddin [34]).

s00 ¼ s0u; where s0 is a constant: (8)

Using equations (7) and (8), the momentum equation (3) can be
written as

r

�
u
vu
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þ v
vu
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�
¼ v

vy

�
ðmþ SÞvu

vy

�
þ S

vN
vy

þ rg0bðT � TNÞ

� cosa� s0B20u
2

x
: ð9Þ

2.2. Boundary conditions

The applicable boundary conditions for the present model are
(i) On the plate surface ðy ¼ 0Þ:

u ¼ 0; v ¼ �vs ðno� slip and permeable wall conditionsÞ
(10a)
N ¼ �n
vu
vy

ðmicrorotationproportional tovorticityÞ (10b)

vT
vy

¼ �qw
kN

ðuniform surface heat fluxÞ (10c)

(ii) Matching with the quiescent free stream ðy/NÞ:

u ¼ UN ¼ 0; N ¼ 0; T ¼ TN; (10d)
where the subscripts w andN refer to the wall and boundary layer
edge, respectively. A linear relationship between the microrotation
function N and the surface shear vu=vy is chosen for investigating
the effect of different surface conditions for microrotation. When
microrotation parameter n ¼ 0, we obtain N ¼ 0which represents
no-spin condition i.e. the microelements in a concentrated particle
flow-close to thewall are not able to rotate as stipulated by Jena and
Mathur [40]. The case n ¼ 0:5 represents vanishing of the anti-
symmetric part of the stress tensor and represents weak concen-
tration. For this case, Ahmadi [41] suggested that in a fine particle
suspension, the particle spin is equal to the fluid velocity at the
wall. The case of n ¼ 1 is representative of the turbulent boundary
layer flows (see Peddison and McNitt [42]).

2.3. Introduction of dimensionless variables

We introduce the following dimensionless variables:

h ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffi
U0

2yNx

s
; j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yNU0x

p
f ðhÞ; N ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
U3
0

2yNx

s
g;

qðhÞ ¼ T � TN
Tw � TN

; ð11Þ

where j is the stream function, U0 is some reference velocity, and

Tw � TN ¼ qw=kN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yNx=U0

p
$

Since u ¼ vj=vy and v ¼ �vj=vx we have from equation (11)

u ¼ U0f
0 and v ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
yNU0

2x

r �
f � hf 0

�
; (12)

where f is non-dimensional stream function and prime denotes
differentiation with respect to h.

With the increase of temperature, the fluid viscosity in the
momentum boundary layer decreases which in turn affects the heat
transfer rate at the wall. Thus in order to predict the flow and heat
transfer rates accurately, it is necessary to take into account the
temperature dependence of the fluid viscosity. Ling and Dybbs [43]
suggest a temperature dependent viscosity of the form

1
m

¼ 1
mN

½1þ gðT � TNÞ�; (13)

where g is the thermal property of the fluid. Equation (13) can be
rewritten as

1
m

¼ AðT � TrÞ; (14)

where,

A ¼ g

mN
and Tr ¼ TN � 1

g
: (15)

In the above relations (15), both A and Tr are constants and their
values depend on the reference state land g. For liquids, A>0 and for
gases, A<0. Typical values of g and A for air are g ¼ 0:026240 and
A ¼ �123.2 (see Weast [44]). The dimensionless temperature q can
also be written as

q ¼ T � Tr
Tw � TN

þ qr; (16)

where qr ¼ Tr � TN=Tw � TN ¼ �1=gðTw � TNÞ and its value is
determined by the viscosity/temperature characteristics of the fluid
under consideration and the temperature difference Tw � TN. Using
(16), equation (13) becomes
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m ¼ mN

�
qr

qr � q

�
: (17)

The variation of viscosity with temperature represented by
equations (14) and (17) has been used by numerous researchers.
Other models such as the Reynolds and Vogel's viscosity models
have also been used in the literature. Knezevic and Savic [45]
investigated in detail the applicability of the Reynolds viscosity
model and found that this model is accurate only for a very limited
temperature range. On the other hand, Vogel's viscosity model is
usually used for modeling thermal boundary layers in third-grade
fluids (see Yurusoy and Pakdemirli [46]). The viscosity model
considered in the present paper is more appropriate for the present
study than the Reynolds and Vogel's viscosity models because it is
valid for a wider range of temperatures.

Savvas et al. [47] observed that for liquid metals, the thermal
conductivity varies linearly with temperature in the range
0e400 �F. We follow Savvas et al. [47] and assume the thermal
conductivity of the fluid to be a linear function of the temperature.
The specific model used is (see Chiam [27])

k ¼ kN

�
1þ 3

T � TN
DT

�
; (18)

where 3 is the thermal conductivity parameter and DT ¼ Tw � TN.
Now introducing equations (11),(12),(17) and (18) into equa-

tions (4),(5) and (9), we obtain,

�
qr

qr � q
þ D

�
f
000 þ ff 00 þ qr

ðqr � qÞ2
f 00q0 þ Dg0

þ lqcosa�Mf 02 ¼ 0;

(19)

�
qr

qr � q
þ 1
2
D

�
g00 � 2D

�
2g þ f 00

�þ f 0g þ fg0 þ qr

ðqr � qÞ2
g0q0 ¼ 0;

(20)

ð1þ 3qÞq00 þ 3q02 þ PrN
�
f q0 � f 0q

�þ �
Qqþ Q*e�h� ¼ 0; (21)

where

D ¼ S=mN is the vortex viscosity parameter, j ¼ yNx=U0 is the
micro-inertia per unit mass, l ¼ 2g0bxðTw � TNÞ=U2

0 is the buoy-
ancy parameter, M ¼ 2s0B20=r is the magnetic field parameter and
PrN ¼ mNcp=kN is the ambient Prandtl number.

The corresponding boundary conditions (10) become,

f ¼ fw; f 0 ¼ 0; g ¼ �nf 00; q0 ¼ �1 at h ¼ 0;
f 0 ¼ 0; g ¼ 0; q ¼ 0 as h/N;

�
(22)

where fw ¼ �vsð2x=yNU0Þ1=2 represents suction/injection velocity
at the plate for vs < 0 and vs > 0, respectively.

2.4. Variable Prandtl number

The definition of Prandtl number shows that it is a function of
viscosity, thermal conductivity and specific heat. Because both
viscosity and thermal conductivity vary across the boundary layer,
the Prandtl number also varies. The assumption of constant Prandtl
number inside the boundary layer when the viscosity and the
thermal conductivity are temperature dependent leads to unreal-
istic results (see Pantokratoras [48,49], Rahman and Salahuddin
[34], and Rahman et al. [35]). In the present work, the Prandtl
number is defined as
Pr ¼ mcp
k

¼
�

qr
qr�q

	
mNcp

kNð1þ 3qÞ ¼ 1�
1� q

qr

	
ð1þ 3qÞ

PrN: (23)

With the use of equation (23), the non-dimensional tempera-
ture equation (21) can be expressed as

ð1þ 3qÞq00 þ 3q02 þ Pr
�
1� q

qr

�
ð1þ 3qÞ�f q0 � f 0q

�
þ �

Qqþ Q*e�h� ¼ 0: ð24Þ
From equation (23) it can be seen that for large qr i.e. qr/N and

small 3 i.e. 3/0, the variable Prandtl number Pr equals to the
ambient Prandtl number PrN, in that case equation (24) reduces to
the equation (21). For h/N, qðhÞ becomes zero and therefore
Pr ¼ PrN regardless of the values of qr and 3. Equation (24) is the
corrected non-dimensional form of the energy equation in which
Prandtl number is treated as variable. To the best of our knowledge,
nobody has incorporated this correction into the non-dimensional
energy equation (24) for modeling the thermal boundary layer
flows with temperature dependent viscosity and thermal
conductivity.

2.5. Skin-friction coefficient and Nusselt number

The quantities of engineering interest are the skin-friction
coefficient (rate of shear stress) and the Nusselt number (rate of
heat transfer). The local skin-friction coefficient is defined as

Cf ¼
ffiffiffiffiffiffiffiffi
2
Rex

s 
�
qr

qr � qð0Þ
�
þ ð1� nÞD

�
f 00ð0Þ; (25)

or,

C*
f ¼ f 00ð0Þ where C*

f ¼
ffiffiffiffiffiffiffiffi
Rex
2

r
Cf
ð qr

qr�qð0ÞÞ þ ð1� nÞD
�: (26)

The local Nusselt number is given by

Nux ¼
�
2�1Rex

	1
2 1
qð0Þ; (27)

or,

Nu*x ¼ qð0Þ where Nu*x ¼
ffiffiffi
2

p
Re

�1
2

1
Nux

: (28)

The numerical values of C*
f and Nu*x are calculated from equa-

tions (26) and (28), respectively.

3. Numerical solutions

The set of equations (19), (20) and (24) is highly nonlinear and
coupled and therefore it cannot be solved analytically. The nonlinear
system consisting of equations (19), (20) and (24) with boundary
conditions (22) are solved using the NachtsheimeSwigert [50]
shooting iteration technique. Themethod iswell established andhas
been successfully implemented to study a variety of nonlinear heat
and fluid flow problems. Adopting this numerical technique,
a computer programwas written for the solution of these equations
incorporating a sixth-order Runge-Kutta integration scheme.

In order to verify the effect of the integration step size Dh, the
code was run with three different step sizes namely; Dh ¼ 0:005,
Dh ¼ 0:003 and Dh ¼ 0:001. In each case, the numerical results
exhibited excellent consistency. It was found that Dh ¼ 0:001
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provided sufficiently accurate (error less than 10�6) results and
further refinement of the grid size was therefore not warranted.

4. Results and discussion

For the purpose of discussion, the numerical results are pre-
sented in the form of non-dimensional velocity and temperature
profiles. Parametric studies were conducted by varying the thermal
conductivity parameter 3, variable viscosity parameter qr, and
suction/injection parameter fw. The choice of the values of the
parameters was dictated by the values chosen by the previous
investigators. Because of the lack of experimental data for vortex
viscosity parameter, suitable representative value was chosen in
order to determine the polar effects on the flow characteristics.
Since we are considering a free convection cooling situation, only
positive large values of l are chosen. In the simulations the default
values of the parameters are considered as D ¼ 2:0, 3 ¼ 0:2,
qr ¼ 5:0, fw ¼ 0:5, l ¼ 20:0, M ¼ 0:5, Q ¼ Q* ¼ 0:5, and
Pr ¼ 1:0 unless otherwise specified. It may be noted that for 3 ¼ 0,
qr/N, and fw ¼ 0, the present problem reduces to that of Rahman
et al. [36].

The effect of thermal conductivity parameter 3 on the velocity
distribution is illustrated in Fig. 1 for 3 ¼ 0, 0.5, 1.0, 1.5, and 2.0. The
corresponding temperature profiles appear in Fig. 2. The curve
marked 3 ¼ 0 represents the case of constant fluid thermal
conductivity. As 3 increases, i.e. as the thermal conductivity
increases with temperature, both the velocity and temperature in
the respective boundary layers increase. The peak velocity
increases by about 7% as 3 increases from 0 to 1, while the corre-
sponding increase in the peak temperature is about 6%. Because
a constant surface heat flux is imposed at the plate, the maximum
temperature occurs at the surface of the plate and decreases away
from the plate.

Fig. 3(a) shows the effect of positive values of the viscosity
parameter qr on the velocity profiles. The effect of increase qr is to
increase the velocity for h < 0.6. However, beyond this range, the
velocity profiles overlap and the trend is reversed, that is, the
velocity decreases with the increase of qr . At h¼ 3.2, the distinction
between the curves disappears. For very large values of qr(/N),
the effect of qron the velocity profile is minimal. This is due to the
fact that as qr/N the factor qr=qr � q in equation (17) approaches
0 1 2 3 4 5 60

0.2
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0.8

1

1.2

1.4
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1.8

f /

Fig. 1. Velocity profile versus h for different values of 3.
its limiting value of 1 as m ¼ mN. In the numerical simulations, the
condition qr/Nwas achieved by setting 1=qr ¼ 0. Fig. 3(b) shows
the effect of negative values of qr on the velocity profiles. In the
range 0 � h � 2:5, the velocity is seen to increase sharply with the
increase in the negative value of qr . For h> 2:5, the velocity profiles
overlap and the velocity now decreases as the negative value of qr
increases.

The temperature profiles for positive and negative values of the
viscosity parameter qr are plotted in Fig. 4(a) and (b), respectively.
Fig. 4(a) shows that as qr increases, the thickness of the boundary
layer decreases with a consequent reduction of the temperature in
the boundary layer. For negative values of qr , the trend is reversed.
As the negative value of qr increases from 0.05 to 100, the boundary
layer gradually thickens accompanied by progressively higher
temperature.

The effects of the suction/injection parameter fw, on the velocity
profile for a strongly buoyant flow is shown in Fig. 5 for two cases:
(1) constant thermal conductivity (3¼0) and constant viscosity
ðqr ¼ NÞ and (2) temperature dependent thermal conductivity
(3¼0.2) and temperature dependent viscosity ðqr ¼ 5Þ. In both
cases, the velocity decreases as the mass transfer process at the
plate goes from injection (fw ¼�2) to suction (fw ¼ 2). In both cases,
the location of the peak velocity shifts closer to the plate surface as
fw increases. Also, as fw increases, the thickness of the boundary
layer decreases. The effect of variable properties (solid lines) is to
promote higher velocities compared with those generated with
constant-property flow model (dashed lines).

Fig. 6 depicts the temperature profiles across the boundary layer
for various values of fw for both the cases of constant and variable
fluid properties. As fw increases from injection (fw ¼ �2) to suction
(fw ¼ 2), the effect is to lower the temperature levels in the thermal
boundary layer. For each value of fw selected for the numerical
computations, the variable-property model yielded higher
temperatures (solid lines) compared with the constant-property
model (dashed lines). The results of Figs. 5 and,6 clearly show that
the wall transpiration (injection or suction) provides an effective
means of controlling the flow and heat transfer characteristics.

Equation (23) was used to compute the variation of PrN within
the boundary layer for various values of qrwith Pr ¼ 1:0. The
results are shown in Fig. 7(a) for positive values of qr and in Fig. 7(b)
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for negative values of qr . Three points emerging from Fig. 7(a) are
worth noting. First, the ambient Prandtl number, PrN, asymptoti-
cally converges to the value of Pr as h/N as it should. Second, for
qr > 0, the ambient Prandtl number, PrN, increases as qr increases.
Third, for large values of qr , the ambient Prandtl number at the
surface of the plate approaches the value of 1, i.e.PrN at h¼ 0 nearly
equals Pr. Fig. 7(b) also manifests three worth noting features. First,
the ambient Prandtl number PrN, asymptotically converges to the
value of Pr as h/N as it should. Second, as the negative value of qr
increases, the ambient Prandtl number, PrN, also decreases. Third,
for large negative values of qr , the ambient Prandtl number at the
surface of the plate approaches the value of 1, i.e. PrN at h¼ 0 nearly
equals Pr.

Fig. 8 illustrates the effect of thermal conductivity parameter; 3
on the variation of the ambient Prandtl number PrN, with h for
Pr ¼ 1:0. Like Fig. 7(a) and (b), Fig. 8 also correctly exhibits the
asymptotic behavior of PrN, that is, PrN ¼ Pr as h/N. As
3 increases, the ambient Prandtl number increases significantly. The
largest increase occurs at the surface of the plate where PrN
increases from a value of 0.8 for 3 ¼ 0 to 2.6 for 3 ¼ 2, a factor of
more than three.

The variation of PrN with h at Pr ¼ 1:0 is displayed for various
values of the suction/injection parameter fw in Fig. 9. Compared
with the case of zero mass transfer, the ambient Prandtl number at
the surface of the plate decreases as suction intensifies while an
opposite behavior is with the strengthening of injection. Figs. 7e9
clearly establish that the Prandtl number varies significantly within
the boundary layer when the fluid properties vary with tempera-
ture. Thus, in modeling the flow of fluids with variable properties,
the Prandtl number cannot be taken as a constant.

Tables 1e3 present thewall shear stress which is proportional to
f 00ð0Þ and the wall temperature, qð0Þ. Table 1 shows the effect of fw
on the shear stress and the wall temperature. As the parameter fw
increases, thewall shear stress decreases. This is true irrespective of
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whether heat generation and the magnetic field are present or
absent. Comparison of results for f 00ð0Þ in the third and fifth
columns shows that for the same M (¼0.5), the presence of heat
generation (Q ¼ Q* ¼ 0.5) produces higher shear stress than when
the heat generation is absent (Q ¼ Q* ¼ 0). The effect of magnetic
field on the shear stress may be assessed by comparing the results
of f 00ð0Þ in fourth and fifth columns. For the same heat generation
(Q ¼ Q* ¼ 0.5), the increase in magnetic field parameter M from
0 (non-conducting fluid) to 0.5 (electrically conducting fluid)
reduces the shear stress. This can be explained as follows; for
M ¼ 0, the hydromagnetic term, �Mf 02, in Eq. (19) vanishes
leading to higher flow velocities compared to the case of electrically
conducting fluids (Ms0). Thus as M increases, the effect is to
reduce the shear stress. The conclusions regarding the effects of
heat generation and magnetic field on shear stress hold true for all
values of suction/injection parameter fw considered.
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Fig. 6. Temperature profile versus h for different values of fw .
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Fig. 7. (a) Ambient Prandtl number versus h for different values of qrð> 0Þ. (b) Ambient
Prandtl number versus h for different values of qrð< 0Þ.
Table 1 also shows that the value of Nu*x decrease as the
parameter fw increases whether heat generation andmagnetic field
are present or absent. For a given fw (suction or injection), the
presence of heat generation produces larger values of Nu*x
compared with the corresponding values for no heat generation.
For a given fw (suction or injection), and heat generation, the
presence of magnetic field produces larger values of Nu*x compared
with the values when the magnetic field is absent.

Table 2 illustrates the effect of thermal conductivity parameter;
3 on the shear stress and the Nusselt number. The shear stress
increases with the increase of thermal conductivity parameter; 3 for
both cases of electrically conducting (Ms0) and non-conducting
(M ¼ 0) fluids. With analogy to Table 1, the presence of heat
generation increases the shear stress. Further, the shear stress
values are larger for a non-conducting fluid than that for con-
ducting fluid. It is also noticed that the shear stress for the variable
thermal conductivity case is higher than that for the constant
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Table 1
Values of C*

f ¼ f 00ð0Þ and Nu*x ¼ qð0Þ for various values of fw and D ¼ 2:0, 3 ¼ 0:2,
qr ¼ 5:0, l ¼ 20:0, Pr ¼ 1:0, n ¼ 0:5, a ¼ 30� .

fw Values of Q ¼ Q* ¼ 0,
M ¼ 0:5

Q ¼ Q* ¼ 0:5,
M ¼ 0

Q ¼ Q* ¼ 0:5,
M ¼ 0:5

�2.0 f 00ð0Þ 5.367952 6.524205 6.318658
�2.0 qð0Þ 1.836684 2.168744 2.296969
�1.0 f 00ð0Þ 4.645779 5.851180 5.681020
�1.0 qð0Þ 1.406378 1.694331 1.780061
0.0 f 00ð0Þ 3.709962 4.956512 4.811868
0.0 qð0Þ 1.026503 1.278722 1.327555
1.0 f 00ð0Þ 2.648817 3.959507 3.840565
1.0 qð0Þ 0.718203 0.939526 0.961766
2.0 f 00ð0Þ 1.639195 3.018178 2.932432
2.0 qð0Þ 0.493076 0.686277 0.694082

Table 2
Values of C*

f ¼ f 00ð0Þ and Nu*x ¼ qð0Þ for various values of 3 and D ¼ 2:0, fw ¼ 0:5,
qr ¼ 5:0, l ¼ 20:0, Pr ¼ 1:0, n ¼ 0:5, a ¼ 30� .

3 Values of Q ¼ Q* ¼ 0,
M ¼ 0:5

Q ¼ Q* ¼ 0:5,
M ¼ 0

Q ¼ Q* ¼ 0:5,
M ¼ 0:5

0.0 f 00ð0Þ 3.011372 4.370857 4.245006
0.0 qð0Þ 0.816164 1.076655 1.110946
0.2 f 00ð0Þ 3.186506 4.461049 4.328751
0.2 qð0Þ 0.862391 1.098689 1.132665
0.5 f 00ð0Þ 3.417152 4.565945 4.424700
0.5 qð0Þ 0.921839 1.122612 1.155870
1.0 f 00ð0Þ 3.713898 4.686349 4.532523
1.0 qð0Þ 0.995650 1.147628 1.179802
1.5 f 00ð0Þ 3.923578 4.766293 4.602687
1.5 qð0Þ 1.045664 1.162582 1.193972
2.0 f 00ð0Þ 4.074711 4.822515 4.651781
2.0 qð0Þ 1.080368 1.172352 1.203088
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thermal conductivity even when the fluid viscosity is variable. It
may be remarked from the table that Nu*x increases with the
increase of 3 for both conducting and non-conducting fluids
whether internal heat generation is present or absent.

Finally, Table 3 illustrates the effect of viscosity parameter qr on
the shear stress and Nusselt number. For qr>0, the shear stress
increases as qr increases. This is true for both conducting and non-
conducting fluids as well as whether the heat generation is present
or absent. For non-conducting fluids the shear stress is higher
compared with that for the conducting fluids. In conducting fluids,
internal heat generation produces larger values of the shear stress
than its absence for all increasing values of qr > 2 (not precisely
Table 3
Values of C*

f ¼ f 00ð0Þ and Nu*x ¼ qð0Þ for various values of qr and D ¼ 2:0, fw ¼ 0:5,
3 ¼ 0:2, l ¼ 20:0, Pr ¼ 1:0, n ¼ 0:5, a ¼ 30� .

qr Values of Q ¼ Q* ¼ 0,
M ¼ 0:5

Q ¼ Q* ¼ 0:5,
M ¼ 0

Q ¼ Q* ¼ 0:5,
M ¼ 0:5

1.99 f 00ð0Þ 2.893249 3.288916 2.773580
1.99 qð0Þ 0.965325 1.471357 1.618746
2 f 00ð0Þ 2.893729 3.294244 2.790752
2 qð0Þ 0.965202 1.470146 1.614978
2.01 f 00ð0Þ 2.898470 3.344245 2.924450
2.01 qð0Þ 0.963979 1.458710 1.585259
3 f 00ð0Þ 3.105118 4.285974 4.158284
3 qð0Þ 0.899817 1.187756 1.229627
4 f 00ð0Þ 3.161571 4.413277 4.283679
4 qð0Þ 0.875379 1.127481 1.163764
5 f 00ð0Þ 3.186506 4.461049 4.328751
5 qð0Þ 0.862391 1.098689 1.132665
10 f 00ð0Þ 3.222137 4.520489 4.381996
10 qð0Þ 0.839294 1.051333 1.081927
100 f 00ð0Þ 3.242522 4.547930 4.404131
100 qð0Þ 0.821076 1.016773 1.045132
N f 00ð0Þ 3.244235 4.549939 4.405579
N qð0Þ 0.819179 1.013286 1.041429
�0.05 f 00ð0Þ 1.799030 2.649515 2.498723
�0.05 qð0Þ 0.345752 0.380798 0.385124
�0.1 f 00ð0Þ 2.260927 3.192630 3.022758
�0.1 qð0Þ 0.431360 0.478697 0.485356
�0.5 f 00ð0Þ 3.056077 4.206696 4.023540
�0.5 qð0Þ 0.628393 0.722475 0.736860
�1.0 f 00ð0Þ 3.200143 4.427162 4.252408
�1.0 qð0Þ 0.695783 0.815622 0.833691
�2.0 f 00ð0Þ 3.253886 4.528720 4.363907
�2.0 qð0Þ 0.745501 0.889742 0.911201
�5.0 f 00ð0Þ 3.262324 4.562584 4.408294
�5.0 qð0Þ 0.785421 0.954097 0.978838
�10.0 f 00ð0Þ 3.256688 4.561709 4.412309
�10.0 qð0Þ 0.801386 0.981468 1.007687
�100.0 f 00ð0Þ 3.245855 4.551775 4.406861
�100.0 qð0Þ 0.817305 1.009859 1.037793
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determined). An opposite trend is observed for some qrcrit < qr � 2.
From equation (25) we see that value of qr cannot be equal to qð0Þ
(an unknown surface boundary condition for the temperature
field). Thus, it is worth mentioning that for qr˛ð0; qð0ÞÞ no solutions
could be found. For negative values of qrð< 0Þ, shear stress
increases with the increase of absolute value of qr up to a certain
limit of absolute value of qr . Beyond this limit of qr shear stress
decreases with the further increase of absolute value of qr . It is also
important to note that for qrð< 0Þ, values of Nu*x decrease with the
increase of absolute value of qr for both conducting and non-con-
ducting fluids.
5. Conclusions

A mathematical model has been developed for the hydromag-
netic natural convection boundary layer flow of a micropolar fluid
under an inclined permeable plate with temperature dependent
fluid viscosity and thermal conductivity as well as with variable
fluid electric conductivity. The dimensionless conservation equa-
tions have been solved numerically using NachetsheimeSwigert
iteration technique with a sixth-order RungeeKutta integration
method. The numerical computations have led to the following
conclusions:

i) An increase in wall suction impedes the flow and pushes the
peak velocity in the velocity boundary layer closer to the plate
surface. The effect of varying the fluid properties (viscosity
and thermal conductivity) is to promote higher velocities
compared to those generated with constant properties fluid.

ii) An increase in suction reduces the temperature level
throughout the thermal boundary layer. The effect of variable
properties is to increase the temperature compared to the
case of constant properties fluid.

iii) The effect of injection is to increase the velocity and
temperature profiles in the respective boundary layers. Thus
the effect of injection is opposite to that of suction.

iv) The peak velocity moves close to the surface of the plate with
the increase of the fluid variable viscosity parameter when
qr > 0, while an opposite effect is observed when qr < 0.

v) For qr > 0, an increase in qr leads to a decrease in the thermal
boundary layer thickness while for qr < 0, an increase in qr
increases the thickness of the thermal boundary layer.

vi) The ambient Prandtl number varies throughout the thermal
boundary when the injection/suction parameter or the
thermal conductivity parameter or the viscosity parameter is
each allowed to vary.

vii) For modeling thermal boundary layers with temperature
dependent viscosity and thermal conductivity, the Prandtl
numbermust be treated as a variable inside the boundary layer.

viii) The wall shear stress increases with the increase in the
thermal conductivity parameter for both electrically con-
ducting (Ms0) and non-conducting (M ¼ 0) fluids.

ix) Thewall shear stress is higher for a non-conducting fluid than
for a conducting fluid.

x) The effect of a magnetic field on the shear stress is similar to
that due to suction.
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